ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 金沢医科大学雑誌(eISSN 2436-6994)
  2. vol.49
  3. no.2

The Quality Evaluation of Graduation Test Questions Based on Machine Learning Predictive Models for the Pass/Fail Outcome of the National Medical Licensing Examination

https://doi.org/10.57457/0002000171
https://doi.org/10.57457/0002000171
d1d7d185-82cc-4a56-9541-f8e5884718f6
名前 / ファイル ライセンス アクション
49(2)-57-66.pdf 本文 (2.9 MB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2024-10-07
タイトル
タイトル The Quality Evaluation of Graduation Test Questions Based on Machine Learning Predictive Models for the Pass/Fail Outcome of the National Medical Licensing Examination
言語 en
言語
言語 eng
キーワード
言語 en
主題Scheme Other
主題 graduation examination
キーワード
言語 en
主題Scheme Other
主題 National Medical Licensing Examination
キーワード
言語 en
主題Scheme Other
主題 machine learning
キーワード
言語 en
主題Scheme Other
主題 prediction of passing
キーワード
言語 en
主題Scheme Other
主題 good questions
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
ID登録
ID登録 10.57457/0002000171
ID登録タイプ JaLC
著者 井関 隼

× 井関 隼

ja 井関 隼

ja-Kana イセキ ハヤト

Search repository
岩藤 和広

× 岩藤 和広

ja 岩藤 和広

ja-Kana イワドウ カズヒロ

Search repository
東田 俊彦

× 東田 俊彦

ja 東田 俊彦

ja-Kana ヒガシダ トシヒコ

Search repository
稲田 誠二

× 稲田 誠二

ja 稲田 誠二

ja-Kana イナダ セイジ

Search repository
田邉 勇人

× 田邉 勇人

ja 田邉 勇人

ja-Kana タナベ ハヤト

Search repository
堀 有行

× 堀 有行

ja 堀 有行

ja-Kana ホリ アリユキ

Search repository
著者(英)
姓名 Hayato Iseki
言語 en
著者(英)
姓名 Kazuhiro Iwadoh
言語 en
著者(英)
姓名 Toshihiko Higashida
言語 en
著者(英)
姓名 Seiji Inada
言語 en
著者(英)
姓名 Hayato Tanabe
言語 en
著者(英)
姓名 Ariyuki Hori
言語 en
抄録
内容記述タイプ Abstract
内容記述 Background: In medical education, studies exploring the relationship between graduation exams, advancement exams, and the National Medical Licensing Examination (NMLE) are limited. Despite the active progress of machine learning (ML) in clinical AI (Artificial Intelligence), research on this topic in the context of exam that did in university and the NMLE is scarce.
Methods: The study aimed to assess the relationship between answer results for obstetrics and gynecology questions in graduation exams and the NMLE pass/fail outcomes, the former of which were used as independent variables in ML and the latter of which the target variable as 1 or 0. We tried 13 types of ML models and selected the most appropriate ones. ML-predicted values equal to or above 0.5 were considered positive, while values below 0.5 were considered negative. Predicted values for student pass/fail were defined as AIpass Rate, and feature importance value for each question was defined as AIpass Index using Symbolic Regression.
Results: The Random Forest model had a high AUC of 0.789 and accuracy of 0.813, while The XGBoost (eXtreme Gradient Boosting) model demonstrated a high AUC of 0.785 and precision of 0.855. Both models performed well in predicting NMLE outcomes. Regarding the student-focused AIpass Rate, all students with predicted values exceeding 0.793, which is 66.96% of the examinees, passed the NMLE; conversely, no student passed the exam with a score below 0.184. As for the question-focused AIpass Index, questions with high values, especially those reaching 0.999 and strongly correlating with NMLE pass/fail, suggest them as ‘good questions’.
Conclusions: While predicting the outcomes of the NMLE in advance is considered challenging, understanding the characteristics of ‘good questions’ strongly correlated with the NMLE is crucial. By conducting a detailed analysis of their content, we suppose that the level of question creation by educators can be elevated, ultimately enhancing the quality of education for students.
言語 en
bibliographic_information
巻 49, 号 2, p. 57-66, 発行日 2024-09
出版者
出版者 金沢医科大学医学会
言語 ja
item_10001_source_id_9
収録物識別子タイプ EISSN
収録物識別子 2436-6994
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2024-10-04 01:26:37.236088
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3